
UniDisk 3.5
#1: UniDisk 3.5 Internals 1 of 1

Apple II
Technical Notes

Developer Technical Support
UniDisk 3.5
#1: UniDisk 3.5 Internals

Revised by: Matt Deatherage November 1988
Written by: Mike Askins May 1985

This Technical Note formerly described the internals of the UniDisk 3.5, and this information is
now documented in the Apple IIGS Firmware Reference.

This Note formerly documented the internal structure of the UniDisk 3.5, primarily for those
interested in providing copy protection. Apple Computer no longer supports copy protection
schemes, and we strongly urge developers to make use of alternate methods to limit unauthorized
duplication.

The internals of the UniDisk 3.5 are now documented in the Apple IIGS Firmware Reference.

Further Reference
• Apple IIGS Firmware Reference

UniDisk 3.5
#2: UniDisk 3.5 ID Bytes 1 of 1

Apple II
Technical Notes

Developer Technical Support
UniDisk 3.5
#2: UniDisk 3.5 ID Bytes

Revised by: Matt Deatherage November 1988
Written by: Mike Askins May 1985

This Technical Note describes the signature bytes of the UniDisk 3.5.

The signature bytes for the UniDisk 3.5 are the same as those for any SmartPort device:

$Cn01 = $20
$Cn03 = $00 ProDOS Block Device
$Cn05 = $03

$Cn07 = $00 SmartPort Interface

where n is the slot number of the device.

When searching the slots for a UniDisk 3.5 it is very important to check all the signature bytes,
since there are other peripherals with similar ID bytes. Once you find a SmartPort card (or port),
you should do a SmartPort STATUS call to determine which devices are connected to it. Any
number of different devices could match the SmartPort ID bytes, so trying to identify a device
without making a SmartPort STATUS call is very likely to produce inaccurate results.

Why the UniDisk 3.5 Does Not Auto-Boot on Older Machines

If you look carefully, you will notice that the older (][,][+ and unenhanced IIe) Autostart
Monitor will not boot any SmartPort device because the ID byte at $Cn07 = $00 instead of $3C
(like the old Disk II). If Apple had left the ID bytes the same as the Disk II, then older versions
of Apple II Pascal (1.2 and earlier) would assume that the drive was a Disk II.

Where This Leaves You

The enhanced IIe ROMs, as well as the UniDisk 3.5 IIc ROMs and later (which you have if you
are using a UniDisk 3.5 on a IIc) check only the first three ID bytes. This check means that they
will not only auto-boot the UniDisk 3.5, but any SmartPort or ProDOS block device. On an
older machine, you can boot one of these devices by typing PR#n from AppleSoft or Cn00G
from the Monitor.

Apple II Technical Notes

2 of 1 Developer Technical Support

Further Reference
• Apple IIGS Firmware Reference

UniDisk 3.5
#3: STATUS Call Bug 1 of 2

Apple II
Technical Notes

Developer Technical Support
UniDisk 3.5
#3: STATUS Call Bug

Revised by: Matt Deatherage November 1988
Written by: Mike Askins & Cameron Birse September 1984

This Technical Note documents a bug in the ProDOS STATUS call when used with a UniDisk
3.5.

The Bug

We have found that SmartPort does not return the WRITE PROTECT error on the STATUS call.
(The WRITE call does return the WRITE PROTECT error as required.)

The bug manifests itself under ProDOS (and not under Pascal, since Pascal does not require the
write protect error to be returned on the STATUS call). Specifically, if a write-protected disk is
present in the UniDisk 3.5, and the application tries to write less than 512 bytes of data to a file
that already exists on the media, it becomes impossible to finish the write or to close the file.
Many applications ignore errors on close calls and try to reuse the buffer area which was
presumably freed by the close call. This reuse results in further errors, even if the UniDisk 3.5 is
later write-enabled, since ProDOS still thinks the file is open. This bug also decreases the
maximum number of open files allowed, as the file left open is included in that number.

The bug also seems to cause the ProDOS CREATE call to fail. When a new file is created,
opened and written to, and the write fails, the file manager does not deallocate the block that it
reserved in the creation attempt. (The RAM copy of the bitmap seems to get
trashed—GET_FILE_INFO calls at this point report that there are zero blocks available.) If
you subsequently write enable the disk and do the save (with any size file), the file is written to
the disk, and the bitmap is updated. The result is that there is a block reserved on the disk that no
file owns, and that block cannot be freed through normal ProDOS file calls.

The Solution

Although this problem was fixed in later IIc revisions, the UniDisk 3.5 interface for the Apple
][+ and IIe has never been modified. Therefore, if your application habitually performs the
actions outlined above, you may avoid it by first checking to see if the media is write-protected
instead of letting the buggy ProDOS STATUS call do it for you.

Apple II Technical Notes

2 of 2 Developer Technical Support

One way to accomplish this would be to issue a SmartPort STATUS call using a statcode =
$00. This call returns four bytes of information, the first of which is the general status byte.
This byte has the following format:

Bit Meaning
7 0 = character device; 1 = block device
6 1 = write allowed
5 1 = read allowed
4 1 = device on line or disk in drive
3 0 = format allowed
2 0 = medium write protected (block devices only)
1 1 = device currently interrupting (Apple IIc only)
0 1 = device currently open (character devices only)

As shown in the table, bit 2 of this byte tells you what the ProDOS STATUS call cannot seem to
figure out—the media in the drive is currently write-protected.

UniDisk 3.5
#4: Accessing Macintosh Disks 1 of 3

Apple II
Technical Notes

Developer Technical Support
UniDisk 3.5
#4: Accessing Macintosh Disks

Revised by: Matt Deatherage November 1988
Written by: Mike Askins May 1985

This Technical Note formerly discussed drive-specific SmartPort calls. These calls are now
documented in the Apple IIGS Firmware Reference. This Note now describes how to access
Macintosh disks from a UniDisk 3.5 disk drive, as this information was not documented in the
manual.

Macintosh Disk Access

The disk data format used in the UniDisk 3.5 is essentially identical to that used for Macintosh
disks. There are three notable differences between the two formats:

• Macintosh blocks are 524 bytes; UniDisk 3.5 blocks are 512 bytes.
• Macintosh MFS disks are single sided; UniDisk 3.5 disks are double sided.

(Macintosh HFS disks are double sided.)
• The Macintosh uses a 2:1 physical block interleave; the UniDisk 3.5 uses a 4:1

interleave.

Accessing Blocks on a Macintosh Disk

Reading from a Macintosh disk is accomplished with the use of the READ command (as opposed
to the READBLOCK command, which enforces 512 byte data.) A call to load block zero from the
Macintosh disk in Unit #1 into memory at $2000 would look like this:

MacRead JSR Dispatch ;Normal SmartPort Entry point
DFB $08 ;Character READ command code
DW Cmd_List ;The parameter list
BCS Error ;Optional error handling...
...

Cmd_List DFB $04 ;CharRead has four parameters
DFB $01 ;Unit number
DW $2000 ;Buffer address
DW 524 ;Always transfer 524 bytes
DFB $00 ;Block (lo)
DFB $00 ;Block (med)
DFB $00 ;Block (hi)

Apple II Technical Notes

2 of 3 Developer Technical Support

Writing to a Macintosh disk is accomplished with the use of the WRITE command. A call to
write block zero to the Macintosh disk in Unit #1 with data at memory location $2000 would
look like this:

MacWrite JSR Dispatch ;Normal SmartPort Entry point
DFB $09 ;Character WRITE command code
DW Cmd_List ;The parameter list
BCS Error ;Optional error handling...

The Cmd_List is the same as in the READ example.

Formatting Macintosh Disks

The formatting routine in the UniDisk 3.5 firmware can format single- or double-sided disks of
variable physical block interleave. The parameters controlling the interleave and the number of
disk sides are located in the controller’s zero page and are set to defaults whenever the INIT call
is issued to SmartPort. These parameters can be altered by using the SET_DOWN_ADR and
DOWNLOAD subcalls of the CONTROL call. Once altered, the FORMAT call uses these values in
the formatting process. These zero page locations and their values are detailed below:

Parameter Location Values
Interleave $0062 $02 = Mac, $04 = UniDisk 3.5
DoubleSided $0063 $00 = Single, $80 = Double-
sided

The following code example formats the media in Unit #1 as a Macintosh disk:

MacFormat JSR Dispatch ;Set address to patch interleave
DFB $04 ;Control call (Set_Down_Adr)
DW Cmd_ListA ;Parameter List
BCS Error

;
JSR Dispatch ;Now patch the interleave byte
DFB $04 ;Control call (DOWNLOAD)
DW Cmd_ListB ;Parameter List
BCS Error

;
JSR Dispatch ;Set address to patch single sided
DFB $04 ;Control call (Set_Down_Adr)
DW Cmd_ListC ;Parameter List
BCS Error

;
JSR Dispatch ;Now patch the single sided byte
DFB $04 ;Control call (DOWNLOAD)
DW Cmd_ListD ;Parameter List
BCS Error

;
JSR Dispatch ;Finally...
DFB $03 ;This is the actual format call
DW Cmd_ListE ;Parameter List
BCS Error

;
RTS

November 1988

UniDisk 3.5
#4: Accessing Macintosh Disks 3 of 3

The parameter lists are as follows:

Cmd_ListA DFB $03 ;All control calls are 3 parms long
DFB $01 ;Unit #1
DW Ctrl_ListA ;This has the interleave address
DFB $06 ;Set_Down_Adr control code

Ctrl_ListA DW $02 ;Two bytes for download address
DW $0062 ;Interleave address

Cmd_ListB DFB $03 ;All control calls are 3 parms long
DFB $01 ;Unit #1
DW Ctrl_ListB ;This has the interleave value
DFB $07 ;Download control code

Ctrl_ListB DW $01 ;Two bytes for download address
DFB $02 ;Mac Disk Interleave value

Cmd_ListC DFB $03 ;All control calls are 3 parms long
DFB $01 ;Unit #1
DW Ctrl_ListC ;This has the sides byte address
DFB $06 ;Set_Down_Adr control code

Ctrl_ListC DW $02 ;Two bytes for download address
DW $0062 ;Interleave address

Cmd_ListD DFB $03 ;All control calls are 3 parms long
DFB $01 ;Unit #1
DW Ctrl_ListD ;This has the sides value
DFB $07 ;Download control code

Ctrl_ListD DW $01 ;Two bytes for download address
DFB $00 ;Value for single sided disk

Ctrl_ListE DFB $01 ;Format call has just one parameter
DFB $01 ;Unit number

Note: You may encounter difficulties when switching 400K single-sided disks and
800K double-sided disks in the same drive. STATUS requests for the number of
blocks on the disk in the drive are valid for the disk last accessed. Thus, when
you READ from an 800K disk, eject it, and insert a 400K disk, a STATUS call will
reveal a size of 800K until a READ or WRITE command is issued. Applications
which intend to handle both 800K and 400K disks should do a READ before each
STATUS call.

Further Reference
• Apple IIGS Firmware Reference
• Apple IIc Technical Reference Manual, Second Edition

UniDisk 3.5
#5: Architectural Differences Between 3.5” Drives 1 of 2

Apple II
Technical Notes

Developer Technical Support
UniDisk 3.5
#5: Architectural Differences Between 3.5” Drives

Revised by: Matt Deatherage November 1988
Written by: Cameron Birse & Mike Askins October 1986

This Technical Note provides information of interest to those developers writing low-level
software for the UniDisk 3.5 and Apple 3.5 disk drives.

Definition of Drives

It is important to understand the differences between Apple’s 3.5” drives if you are considering
writing low-level software for use on the Apple II family drives.

UniDisk 3.5 is an intelligent drive, meaning that it has a microprocessor-based
controller inside the drive enclosure that communicates with the host
computer in an intelligent fashion through the IWM port. The host sends
commands to the intelligent controller in the drive and the controller
manipulates the drive hardware to read or write, and sends the data back to
the host in a “packet” format.

Apple 3.5 Drive is an unintelligent drive that depends on the host computer to manipulate
the drive hardware to read and write data to and from the drive. Apple
IIGS low-level routines for this drive will be essentially the same as those
downloaded to the UniDisk 3.5 controller RAM, except they will reside in
the host computer’s memory. New device-specific control calls must be
used for the Apple 3.5 Drive.

Tips for Low-Level Drive Access

The following calls are not guaranteed to be compatible in the future; for the highest level of
compatibility, avoid disk access at this level.

• Identifying the drives: The drives can be identified by first searching for a
device that has the SmartPort firmware. After determining that there is a
SmartPort device in the machine, perform a STATUS call with the statcode =
$03 (return Device Information Block (DIB)). In the DIB there is a type byte and
a subtype byte. The UniDisk 3.5 has a value of $01 for the type byte and $00 for

Apple II Technical Notes

2 of 2 Developer Technical Support

the subtype byte. The Apple 3.5 Drive also has a value of $01 for the type byte,
but its subtype byte value is $C0. Be sure to make device-specific calls to ensure
drive identification. See SmartPort Technical Note #7, SmartPort Subtype Codes
for more details.

November 1988

UniDisk 3.5
#5: Architectural Differences Between 3.5” Drives 3 of 2

• Special routines: In the UniDisk 3.5, there is extra RAM space in the
controller’s memory map for custom read, write and ID routines. These routines
can be downloaded to the controller from the host and executed via the SmartPort.
With the Apple 3.5 Drive, these special routines reside in the host memory.
Equivalent mark and hook tables for the Apple 3.5 Drive, set by control calls
through the SmartPort, are supported on the Apple IIGS , but are not guaranteed
for all drives and CPUs.

• IWM hardware differences: On the UniDisk 3.5, the IWM registers are located
in the drive’s controller memory starting at $0A00. On the Apple 3.5 Drive, the
IWM registers are located in host memory starting at $C0E0 (slot 6 I/O space).

• Speed differences: Downloaded code in the UniDisk 3.5 controller runs at
slightly under 2 MHz, and the cycle times are regular. The Apple IIGS running at
1 MHz also has regular cycles, however, when running at 2.8 MHz, the timing is
complicated by RAM refresh and I/O synchronization times. It is best to avoid
timing critical solutions, or be sure to run at 1 MHz for the Apple 3.5 Drive.

As always, in order to promote compatibility between your software and future Apple II systems
and to avoid writing utilities which will only work on one kind of drive, you should avoid low-
level calls that are specific to a particular device or CPU.

Further Reference
• Apple IIGS Firmware Reference

	1. UniDisk 3.5 Internals
	2. UniDisk 3.5 ID Bytes
	3. STATUS Call Bug
	4. Accessing Macintosh Disks
	5. Architectural Differences Between 3.5" Drives

